

GSP - G&M codes
extension to ACSPL+

Reference Guide

Version 1.0

Jan 2014

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
Table of Contents

2
 Version 1.0

Table of Contents

1 INTRODUCTION ... 3

2 GSP ADAPTATION TO DIFFERENT G-CODE DIALECTS .. 3

3 GSP ESSENTIALS.. 4

Notice

The information in this document is deemed to be correct at the time of publishing. ACS Motion Control
reserves the right to change specifications without notice. ACS Motion Control is not responsible for incidental,
consequential, or special damages of any kind in connection with using this document.

Revision History

Date Revision Description
Dec. 10 2013 1.0 Initial version

Trademarks

ACS Motion Control, SPiiPlus, PEG, ServoBoost, MotionBoost and NetworkBoost are trademarks of ACS Motion
Control Ltd.

Windows and Visual Basic are trademarks of Microsoft Corporation.

EtherCAT is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Any other companies and product names mentioned herein may be the trademarks of their respective owners.

ACS Motion Control Ltd
1 Hataasia St
Ramat Gabriel Industrial Park
Migdal Ha’Emek 2307037 Israel
T +972 4 654 6440
F +972 4 654 6443
www.acsmotioncontrol.com
support@acsmothioncontroler.com

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
Introduction

3
 Version 1.0

1 Introduction

This document defines the G and M codes extension of ACSPL+ for the SPiiPlus NT controllers,
hereafter abbreviated as GSP.

G-code is a common name for the international standard RS-274D/ISO-6983. The standard
defines the command language for numerically controlled machines.

G-code cannot be considered as a specific language, but rather as a collection of incompatible
dialects with numerous additions/modifications. The proposed G-code extension (GSP) covers
common needs, but is not intended to be compatible with any specific CNC machine.

2 GSP Adaptation to Different G-Code Dialects

The SPiiPlus NT controller receives information from the G/M-code program which has been
automatically generated by the specific CAM SW tool, and in most cases has the ability to be
adapted for the specific CNC machine. This capability is provided by a CAM SW post-
processor, which can be adapted to use only those G/M-codes, which are supported by the
specific CNC. So, if using SPiiPlus NT, the post-processor needs to be adapted to use only G/M
commands, as defined in this guide.

Figure 1: GSP adaptation to G‐code dialects

In some cases, the ability to adapt the CAM post-processor may not be available. In these
cases, GSP provides the ability to extend a supported G/M code-list by defining new G/M
codes which are implemented by means of GSP subroutines. See Subroutines for details.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

4
 Version 1.0

3 GSP essentials

3.1 Loading G/M Code Program

The G/M code program that is either generated by the CAD SW tools or written manually,
should be saved as a text file. This text file can be loaded into the SPiiPlus controller buffer,
either using the Program Manager of SPiiPlus MMI Application Studio or by the user host
program using special functions of the ACS Library. Refer for the corresponding guides for
details.

3.2 Compilation and Execution G/M Code Program

Once the G/M program is loaded into the SPiiPlus controller buffer, it is compiled. If there
are unsupported G/M codes or if there is a syntax error, the controller generates an error and
the Program Manager highlights the program line containing the error.

When the G/M program was successfully compiled, it can be executed exactly the same way
as a regular ACSPL+ program is executed. The debugging capabilities (breakpoints, step-by-
step executions, etc.) of the Program Manager are also supported for G/M programs.

Figure 2: Compilation and execution of G/M code

3.3 GSP and ACSPL+

G/M code program can be used in any SPiiPlus program buffer. A program buffer can contain
ACSPL+ program, pure GSP code, or any mix of ACSPL+ and GSP lines.

Mixing of GSP with ACSPL+ provides additional advantages to the user, such as:

 The ability to handle I/O synchronously with the motion

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

5
 Version 1.0

 The ability to check different conditions, like motor position, number of executed
segments, etc., during the G/M program execution and perform any user-defined actions
accordingly

 Activate specific SPiiPlus functions as PEG, MARK, etc.

The ACSPL+ commands or several commands are added to the G/M code program using
Buffer Editor of SPiiPlus MMI Program Manager, exactly the same way as to regular ACSPL+
program:

Figure 3: GSP and ACSPL+

The program that combines GSP and ACSPL+ commands should meet the following rules:

 GSP and ACSPL cannot be mixed within a single line; i.e. one code line can contain either a
GSP statement or ACSPL statement..

 A GSP line starts with an N addressfollowed by a number; e.g. N635 (N-address). The
ACSPL compiler recognizes the Naddress signature and interprets the rest of line as GSP
code.

 One GSP statement spans one line; the statement cannot continue on the next line; two
statements cannot be placed in one line.

Note: Special attention should be taken if a user defines an ACSPL variable that resembles the
N-address signature, like

int N01

Note:In this case, if the buffer contains an ACSPL line starting with N01=1000, the controller
will recognize the line as GSP code, and will probably return an error.

Therefore, defining such variable names is not recommended in a buffer containing GSP lines,
and in the D buffer if GSP is used in any buffer.

If a customer does not use GSP, he is not limited in variable names.

3.3.1 Addresses and Values

The GSP line consists of terms separated by spaces. Each term starts with a one-letter
address followed by value. No space between the address and the value is allowed. The value
can be either a literal constant or expression in parenthesis.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

6
 Version 1.0

3.3.2 Value as Literal Constant

Literal constant values in GSP lines can be specified in either integer or real format. Any
numerical format allowed in ACSPL statements can be used in GSP statements.

The following example of GSP line contains only literal constant values:

N15 G2 X-100 Y-90 R10

3.3.3 Value as Expression

A left square bracket placed immediately after an address letter opens expression value. The
expression spans to the next right square bracket. If required , the expression may include
nested parenthesis.

The expression syntax and semantics are similar to ACSPL expressions syntax.

The controller calculates expressions before executing containing the G code line. Within one
G code line, expressions are calculated from left to right.

Expressions are most useful with coordinate addresses X, Y, Z, etc.

The following addresses do not allow expressions and must be followed by literal constant:

N – Line number.

G – Preparatory function.

M – Miscellaneous function.

P – When specifying digital output after M61/M62. However, P accepts expression if
designates velocity, dwell, or subroutine parameter.

3.3.4 Using ACSPL Variables

ACSPL variables can be used in G code lines, but only within expressions. If a single variable
is required to supply value to an address, the variable name should be enclosed with square
brackets to make the controller treat it as trivial expression.
For example, in the following two lines use an ACSPL+ variable VEL that defines the default
velocity for the axis with index 0. The first G1 motion will be executed using default X velocity
divided by 2, but the second one will use the default X velocity. (Division by 60 is intended to
convert units/sec to units/min.):

N15 G1 X-100 F[VEL(0)/60/2] ; VEL(0) is ACSPL+ variable
N20 G1 X100 F[VEL(0)/60] ; VEL(0) is ACSPL+ variable

Either predefined standard variables or user-defined variables can be used in GSP
expressions. User-defined variables should obey usual ACSPL scope rules. As such, to be used
in a G code expression, the variable should be declared either in the same buffer (as local or
global) or in D buffer.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

7
 Version 1.0

3.3.5 User Units

SPiiPlus user units also affect GSP statements. A GSP value related to the axis position or
velocity is measured in units specified in SPiiPlus for this axis. For example, if user unit of X
axis is one millimeter, then GSP specifies X position in mm, and X velocity in mm/min.

The SPiiPlus units are initially defined during the axis setup and it is not recommended to
switch the units during machine operation. For this reason, GSP does not support unit
specification commands G20/21.

3.3.6 Comments

Different dialects of G code use different syntaxes to introduce comments.

GSP supports two forms of comments, both can appear only within G code line:

 Semicolon: marks the rest of G code line as comment

 Parenthesis: marks the enclosed text as comment. (Be careful, parenthesis within an
ACSPL expression does not enclose the comment.)

The following G code lines illustrate two forms of comments:

N10 G0 X-100 Y-100 ; the rest of the line is comment
N15 G1 X[RPOS(0)+100] (Former parenthesis contain RPOS index)

3.3.7 The% Symbol

In many G code dialects, % symbol marks the beginning and the end of G code program.

In GSP, a line starting with % symbol is considered a G code line. GSP does not make any use
of such line, but simply ignores its content. The rule applies only if % symbol is the first non-
space character in a line; the same character between other characters may have other
meaning.

3.4 Axis Mapping and Trajectory Planes

G-code uses 9 letter addresses (X, Y, Z, U, V, W, A, B, C) to designate axes.

A circular arc can be specified in planes XY, XZ, or YZ only. Function G17, G18, or G19 selects
one of the planes.

If none of the axes X, Y, Z, U, V, W, A, B, C are defined in the controller, GSP implies that the
default mapping of X, Y, Z, U, V, W, A, B, C axes to the first nine SPiiPlus axes (0 to 8).
However, if the controller redefines one or more of X, Y, Z, U, V, W, A, B, C axes, then GSP
follows the existing definitions. For example, if the controller’s D buffer contains the
statement

axisdef X=4,Y=12,A=0

GSP maps X to the 4 th physical axis, Y to the 12th, and A to axis 0. Mapping of other axes
does not change. The user should avoid conflicts: in the example above, X definition overlaps
with the V default mapping (axis 4). Therefore V axis should not be used in GSP statements.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

8
 Version 1.0

In GSP, plane XY is the default trajectory plane: lines and arcs specified in this plane build up
a continuous trajectory; the controller applies a look-ahead algorithm to the trajectory. Any
motion specified for other axes is considered as an independent PTP motion.

Axis mapping can be changed freely at any time as follows: G17 selects trajectory plane XY,
G18 selects XZ, and G19 selects YZ.

Axes of the current trajectory plane (XY, XZ, or YZ) can be used with motion functions G0,
G1, G2, or G3. Other axes can be used with motion function G0 and G1.

3.5 GSP Execution

The controller executes the GSP program exactly in same manner as regular ACSPL+ buffer,
meaning that for each controller cycle one line of GSP program is executed. Most of G
functions do not cause any motion; they define internal calculations or settings. Such
functions are executed synchronously with the program execution.

More complex execution rules govern the motion functions G0, G1, G2, and G3. The motion
commanded by G0, G1, G2, G3 does not always start when the line with G0, G1, G2, G3 is
executed; actual motion usually starts once the next motion is commanded.

If a program contains GSP lines only, the G-code program execution is not affected by the
specified above rules. However, these rules should be taken into account if GSP commands
are mixed with ACSPL+.

For example, the following mix of GSP and ACSPL may show unexpected behavior:

N10 G00 X1000 Y1000 ; Actual motion start will occur only once line N20 is executed

TILL RPOS(X)>500 ; Infinite wait; the condition cannot be met because the motion
has not started yet

N20 G00 X2000 Y2000 ; Program execution never reaches this line as the program waits
at the previous line

To fix the problem, reorder the lines as follows:

N10 G00 X1000 Y1000 ; Actual motion start will occur only once line N20 is executed

N20 G00 X2000 Y2000 ; N10 motion starts here; N20 motion will wait for the next motion
command

TILL RPOS(X)>500 ; The condition will be met when X axis position reaches 500

Pay attention, due to G-code modality, a GSP line may omit motion function; however, if any
of the addresses X, Y, Z, U, V, W, A, B, C is specified in the line, the last specified motion
function is implied.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

9
 Version 1.0

3.6 GSP Commands Descriptions

Code Name Addresses
Address
meaning

Command description

G00 Positioning
X, Y, Z, U,
V, W, A, B,
C

Axis
Position

Function G0 (Rapid Motion) is
equivalent to PTP motion with
suffix M. Any combination of X, Y,
Z, U, V, W, A, B, C addresses can
be specified with G0. All specified
axes are used to initiate a single
PTP motion. The suffix M causes
the maximum vector velocity to
comply with axis velocity VEL for
each involved axis.
If an XSEG motion in a trajectory
plane has been initiated by
previous commands, the XSEG
motion is terminated in a normal
way, and PTP starts once the
XSEG motion finishes.
SPiiPlus buffer execution is
delayed in the G0 line waiting for
the motion termination. In
general, G0 operation is similar to
the following action sequence:
If an XSEG motion is active in a
trajectory plane, execute ends
Wait for motion termination for all
X, Y, Z, U, V, W, A, B, C axes
Start PTP/M motion for all
specified axes
Wait for the PTP motion
termination

G01
(in-
plane)

Linear
segment

X, Y, Z, U,
V, W, A, B,
C

Axis
Position

If the statement specifies one or
two axes, and all specified axes
belong to the trajectory plane,
the function adds a linear
segment to XSEG motion. In this
case, function execution includes
the following actions:
If no XSEG motion is currently
active, a new XSEG motion in the
current trajectory plane is
initiated
A new linear segment is added to
the XSEG motion
Usually, the function does not
introduce a delay in the program
execution. However, usual rules
of motion queuing and segment
queuing do apply; e.g., if the
segment queue is full, the
program is delayed until the new
segment can be added.

F
Feedrate in
units/min

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

10
 Version 1.0

G01
(out-
of-
plane)

Positioning

X, Y, Z, U,
V, W, A, B,
C

Axis
Position

If the statement specifies one or
more axes that do not belong to
the trajectory plane, the function
acts similar to G0, but instead of
maximizing velocity it uses the
specified vector velocity. The
vector velocity can be specified in
the same statement (F address),
or in a previous statement as G-
code modal rules imply. In this
case, function execution includes
the following actions:
If an XSEG motion is active in a
trajectory plane, execute ENDS
Wait for motion termination for all
X, Y, Z, U, V, W, A, B, C axes
Start PTP motion for all specified
axes
Wait for the PTP motion
termination
Like G0 function, out-of-plane G1
delays program execution until
the motion termination.

F
Feedrate in
units/min

G02

G03

Clockwise arc
segment

Counter-
clockwise arc
segment

X, Y, Z
Axis
Position

The functions can refer to
trajectory plane only; only axes
X, Y and Z can appear with
functions G1, G2, G3.
The function execution includes
the following actions:
If no XSEG motion is active, a
new XSEG motion in the current
trajectory plane is initiated
New arc segment is added to the
XSEG motion
Usually, the function does not
introduce a delay in the program
execution. However, usual rules
of motion queuing and segment
queuing do apply; e.g., if the
segment queue is full, the
program is delayed until the new
segment can be added.
Functions G02 and G03 cannot
change the trajectory plane; use
G17, G18, or G19 for this
purpose. For example, if the
current trajectory plane is YZ,
specification G2 with address X is
an error.
R can be specified with a sign: a
positive value defines a smaller
arc (less than or equal to 180°);
a negative value defines a larger
arc (more than 180°):

I, J, K

Circle
center
offset from
the current
location in
X, Y and Z
direction
respectively

R Arc radius

F
Feedrate in
units/min

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

11
 Version 1.0

G04 Dwell P
Dwell time
in seconds

The function causes a delay for
the specified number of seconds.
It executes as follows:
If an XSEG motion is active in a
trajectory plane, the execute
ENDS
Waits for motion termination of
any of X, Y, Z, U, V, W, A, B, C
axis
Waits for the specified number of
seconds

G09 Exact stop

The function specifies
deceleration to zero in the end of
the segment. The function is not
modal and should be specified in-
line with one of segment-
definition functions G1÷G3.

G10
Coordinate
origin

X, Y, Z, U,
V, W, A, B,
C

Coordinate
origin

The function specifies the
coordinate origin. The origin is
changed only for the specified
axes; other axes retain their
previous origin. If absolute
programming is used, the value
of origin is added to the
coordinate values specified in
subsequent G0÷G3 functions..

G17
Trajectory
plane XY

N/A N/A
The function selects the XY
trajectory plane.

G18
Trajectory
plane XZ

N/A N/A
The function selects the XZ
trajectory plane.

G19
Trajectory
plane YZ

N/A N/A
The function selects the YZ
trajectory plane.

G40
Tool radius
compensation
off

N/A N/A
The function cancels tool radius
compensation.

G41
Tool radius
compensation
left

D
Cutter
radius

The function initiates building left
equidistant trajectory of the
cutter center.

G42
Tool radius
compensation
right

D
Cutter
radius

The function initiates building
right equidistant trajectory of the
cutter center.

G43
Tool offset
compensation
positive

H Tool length

The tool length value supplied by
the H address is added to the
perpendicular axis position. The
perpendicular axis is Z, Y, or X
depending on trajectory plane.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

12
 Version 1.0

G44
Tool offset
compensation
negative

H Tool length

The tool length value supplied by
H address is subtracted from the
perpendicular axis position. The
perpendicular axis is Z, Y, or X
depending on trajectory plane.

G49
Tool offset
compensation
cancel

N/A N/A
The function cancels tool offset
compensation.

G53
Machine
coordinate
system

N/A N/A
The function instructs to ignore
previously specified axis origins
(G10) for the current line only.

G61
Modal exact
stop

N/A N/A

The function specifies
deceleration to zero at the end of
the segment. Unlike G09, the
function is modal and works for
the current statement and all
subsequent statements.

G64 Cancel G61 N/A N/A
The function cancels the G61
action and returns to default
segment processing.

G90
Absolute
programming

N/A N/A

The function defines absolute
programming in the current line
and subsequent lines. The
specified axis position value is
absolute related to axis origins.

G91
Incremental
programming

N/A N/A

The function defines incremental
programming in the current line
and subsequent lines. The
specified axis position value is
incremental related to the last
specified position.

M00 Stop N/A N/A

The function terminates program
execution. The action is
equivalent to the STOP command
in ACSPL+.

M61
Set digital
output

P
Digital
output

The function sets the digital
outputs to 1 (high level) one or
more.
The function should be followed
by one or more P addresses. Each
P address specifies one digital
output to be set. The output is
specified as pair of output
variable index and output bit,
separated by dot: P0.1.
If M61 is specified in line with one
of G0÷G4 functions, setting the
digital outputs is executed
synchronously with the start of
motion or dwell. If no G0÷G4
function is specified in the line,
the setting is not synchronized to
motion and occurs once the
controller executes the line

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

13
 Version 1.0

M62
Reset digital
output

P
Digital
output

The function resets to 0 (low
level) one or more digital outputs.
The function should be followed
by one or more P addresses. Each
P address specifies one digital
output to be reset. The output is
specified as pair of output
variable index and output bit,
separated by dot: P0.1.
If M62 is specified in line with one
of G0÷G4 functions, setting the
digital outputs is executed
synchronously with the start of
motion or dwell. If no G0÷G4
function is specified in the line,
the setting is not synchronized to
motion and occurs once the
controller executes the line..

3.7 GSP supported Addresses

The following table specifies one-letter addresses used in GSP:

N Line number
G Preparatory function
M Miscellaneous function
X, Y, Z, U, V, W,
A, B, C

Axis position

F Feedrate in units/min
P Dwell time in seconds if used after G4 function.

Final feedrate in units/min if used after G0÷G4 functions.
Digital output to set/reset if used after M61/M62 functions.
Subroutine parameter, if used after G or M function interpreted as
subroutine.

I, J, K Arc center position
D Cutter radius offset
H Tool length offset
R Arc radius
S, Q, T Can only be used as parameters in subroutine call

Addresses not specified in the table can be used in subroutine call to define subroutine
parameters. If used outside the subroutine call, not specified address is discarded and its
value is ignored.

3.8 Subroutines

GSP supports subroutine calls. The subroutines are used if there is a need to define a new G
or M code command, which is not listed in the GSP predefined commands list.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

14
 Version 1.0

Figure 4: GSP and ACSPL+

3.8.1 Subroutine Declaration

The subroutine declaration follows ACSPL+ syntax. The subroutine starts with a label and
ends with ret command. The subroutine body can contain either ACSPL lines or G code lines of
any combination..

Not every subroutine can be called from a G code line. To be callable from G code,
subroutines must have a special label: callable labels from G code consists of G or M letters
followed by digits. For example, label G59 can be called from G code line; however, label
G59D cannot.

3.8.2 Subroutine Call

GSP interprets any G or M address as a potential subroutine call.

Once a G or M address is encountered, GSP first checks if the specified value falls within the
predefined codes (see GSP commands description). If the value does not appear among
predefined functions, GSP searches through available subroutines. GSP first examines
subroutines in the current buffer; if not found, then subroutines in D buffer are examined.

If a subroutine with an appropriate label exists in either a current or D buffer, GSP executes
call to the subroutine. If no predefined function exists and no appropriate subroutine was
found, GSP reports an error.

This way, predefined G/M codes cannot be overridden with subroutines. Even if a G01
subroutine is defined in a buffer, code G01 will be interpreted as Linear Segment, but not as
subroutine call.

There is a slight difference in value interpretation in two cases:

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

15
 Version 1.0

 Predefined codes are interpreted by arithmetic value. For example, addresses G1, G01,
and G001 are considered identical and are all interpreted as Linear Segment.

 Subroutine calls follow literal specification, so that G54 calls subroutine G54, but not G054
or G0054. Therefore, addresses G54, G054, and G0054 may call different subroutines.

If a line contains a subroutine call, the whole line is interpreted as subroutine call. All other
addresses on the line are interpreted as subroutine parameters accessible through functions
gParamAddr/gParamValue. Therefore a subroutine call and its parameters should appear in a
separate line. No other subroutine call or predefined G/M code is possible on the same line.

Once a subroutine call occurres, the controller executes the subroutine body until the ret
command. Then the controller returns to the line next to the subroutine call, and continues
executing the program.

3.8.3 G/M Specification with Digital Point

GSP also supports calling ACSPL subroutines using G/M specification with decimal point.

Once GSP encounters a G or M value with a decimal point, the following processing occurs:

 The construction is interpreted as subroutine call

 All characters left of the decimal point including the letters G or M constitutes the base
subroutine name

 The base is supplemented with three positions taken from the right to decimal point. If less
than three symbols are to the right of the decimal point, the missing positions are filled
with 0.

 The resulting name is used to call ACSPL subroutine

For example, address G5.1 calls subroutine G5100; address M80.123 calls subroutine
M80123, and so on.

The following limitations apply:

 Only one decimal point is allowed in a G/M value

 Maximum 10 digits are allowed left to decimal point

 Maximum 3 digits are allowed right to decimal point

3.8.4 Access to Parameters

Once a G or M address causes subroutine call, subsequent addresses can be used as
subroutine parameters. Usually, address P supplies parameters to subroutine; however, other
addresses can be used if necessary. For example, the following line calls G500 subroutine with
three parameters 2, 300.25, and -1.7:

N10 G500 P2 P300.25 P-1.7

To access parameters from the subroutine body, two new embedded ACSPL functions are
implemented:

 gParamAddr has one integer argument and returns the address of the G function call
parameter. This argument supplies the parameter number: argument 1 corresponds to

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

16
 Version 1.0

the G address itself, argument 2 corresponds to the first address after the G function call,
3 – to the second, and so on.
Argument 0 can be used if necessary to access address before the G/M function address.
The function returns the parameter address as its ASCII code; e.g., if the address is P, the
function returns 80.

 gParamValue has one integer argument and returns the value of the G function call
parameter. This argument supplies the parameter number: argument 1 corresponds to G
address itself, argument 2 corresponds to the first address after the G function call, 3 – to
the second, and so on. For example, in the function G500 called by the above line,
gParamValue (2) returns 2, gParamValue (3) returns 300.25, and gParamValue (4)
returns -1.7.

3.8.4.1 gParamAddr

Description

gParamAddr can be used within an ACSPL subroutine called from G code. The function
provides access to the parameters specified after the subroutine call and returns ASCII code
of the corresponding parameter address.

Syntax

gParamAddr (Index)

Arguments

Index An integer number that specifies the position of the parameter after the
function call. Value 1 specifies the G/M address itself, value 2 specifies first
address after the function call, 3 – second address after the function call,
and so on. The value 0 is used to access parameters specified before the
G/M command.

Return value

The function returns an integer ASCII code of the corresponding address. For example, if the
first address after the function call is P0.01, function gParamAddr (2) in the subroutine body
returns 80, which is ASCII code of P.

The function returns zero in the following cases:

 The argument is negative

 The argument value exceeds the number of addresses in G code line after the function call

 The function was called not from within the G code

3.8.4.2 gParamValue

Description

gParamValue can be used within the ACSPL subroutine and is called from G code. The function
provides access to the parameters specified after the subroutine call. The function returns the
value specified in the corresponding parameter address.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

17
 Version 1.0

Syntax

gParamValue(Index)

Arguments

Index An integer number that specifies the position of the parameter after the function call.
. Value 1 specifies the G/M address itself, value 2 specifies first address after
the function call, 3 – second address after the function call, and so on. The
value 0 is used to access parameters specified before the G/M command.

Return value

The function returns a real value of the corresponding parameter. For example, if the first
address after the function call is P0.01, function gParamValue(2) in the subroutine body
returns 0.01.

The function returns zero in the following cases:

 Argument is negative

 Argument value exceeds the number of addresses in G code line after the function call

 The function was called not from the G code

Example

The following example subroutine implies to be called from G code line like

N100 G655 P0.001 P2.25

where two parameters after G655 call supply target values for X and Y:

G655: ! Subroutine label
if (gParamAddr (2)<>80) | (gParamAddr (3)<>80)
 disp “Wrong parameters” ! Two P addresses expected
 stop
end
ptp (0), gParamValue(2) ! Move X axis to required position
ptp (1), gParamValue(3) ! Move Y axis to required position
ret

3.8.5 Subroutine Scope

The G subroutine can be declared either in regular buffer, or in D buffer.

When G subroutine is declared in a regular buffer it has a local scope and can be called from
the same buffer only.

When G subroutine is declared in a D buffer it has a global scope and can be called from any
buffer.

GSP - G&M codes extension to ACSPL+ 1.0 Reference Guide
GSP essentials

18
 Version 1.0

Once GSP encounters a potential subroutine call, GSP first looks for a subroutine in the
current buffer where the calling line is located and if not found, GSP looks in D buffer. If there
is no suitable label in the current buffer nor in the D buffer, GSP tries interpreting the G/M
address as standard G/M function.

The G subroutine body can access any object accessible in the buffer where G subroutine is
declared. G subroutine is declared in a regular buffer and can use any local or global variable
declared in this buffer and also global variables declared in D buffer. G subroutine is declared
in D buffer can use only variables declared in D buffer.

3.9 Modality

GSP follows usual G-code modality rules. For example, if a GSP statement includes any axis
addresses, but lacks G function that requires axis addresses (G0÷G3), the controller implies
the last specified function.

Modality is local to a buffer; i.e., modal implications are restricted to a buffer, but do not
affect programs in other buffers.

3.10 GSP and XSEG

GSP statements initiate the XSEG command which support Extended Segmented Motion
without suffixes.

The first specified axis address defines the leading axis. Corresponding motion uses the
motion parameters of the leading axis and applies automatic corner processing.

Additional information can be found in the ACSPL+ Programmer’s Guide and SPiiPlus
Command & Variable Reference Guide.

